Glycemic load effect on fasting and post-prandial serum glucose, insulin, IGF-1 and IGFBP-3 in a randomized, controlled feeding study.

European journal of clinical nutrition. 2012;66(10):1146-52

Plain language summary

Dietary intervention studies have shown detrimental metabolic effects of high-glycaemic load diets. The glycaemic index (GI) is the numerical classification of a particular food’s blood glucose-raising effect. The aim of this study was to evaluate the effect of a high-glycaemic load diet on circulating levels of insulin-like growth factor-1 (IGF-1) [hormone] and insulin-like growth factor-binding protein 3 (IGFBP-3) [protein] compared to a low-glycaemic load diet. The study is a randomised controlled crossover study which enrolled 84 normal weight and overweight-obese healthy individuals. The study included two 28-day weight-maintaining high- and low-glycaemic load diets. Results indicate that consumption of a low-glycaemic load diet resulted in lower post-prandial [after a meal] insulin and glucose responses and modestly lower fasting IGF-1 and IGF-1/IGFBP-3 concentrations. However, there were no observable effects of glycaemic load on insulin resistance or glucose-adjusted post-prandial insulin responses in these healthy participants. Authors conclude that further intervention studies are required in order to weigh the impact of dietary glycaemic load on risk for chronic disease.

Abstract

BACKGROUND/OBJECTIVES The effect of a low glycemic load (GL) diet on insulin-like growth factor-1 (IGF-1) concentration is still unknown but may contribute to lower chronic disease risk. We aimed to assess the impact of GL on concentrations of IGF-1 and IGF-binding protein-3 (IGFBP-3). SUBJECTS/METHODS We conducted a randomized, controlled crossover feeding trial in 84 overweight obese and normal weight healthy individuals using two 28-day weight-maintaining high- and low-GL diets. Measures were fasting and post-prandial concentrations of insulin, glucose, IGF-1 and IGFBP-3. In all 80 participants completed the study and 20 participants completed post-prandial testing by consuming a test breakfast at the end of each feeding period. We used paired t-tests for diet component and linear mixed models for biomarker analyses. RESULTS The 28-day low-GL diet led to 4% lower fasting concentrations of IGF-1 (10.6 ng/ml, P=0.04) and a 4% lower ratio of IGF-1/IGFBP-3 (0.24, P=0.01) compared with the high-GL diet. The low-GL test breakfast led to 43% and 27% lower mean post-prandial glucose and insulin responses, respectively; mean incremental areas under the curve for glucose and insulin, respectively, were 64.3±21.8 (mmol/l/240 min; P<0.01) and 2253±539 (μU/ml/240 min; P<0.01) lower following the low- compared with the high-GL test meal. There was no effect of GL on mean homeostasis model assessment for insulin resistance or on mean integrated post-prandial concentrations of glucose-adjusted insulin, IGF-1 or IGFBP-3. We did not observe modification of the dietary effect by adiposity. CONCLUSIONS Low-GL diets resulted in 43% and 27% lower post-prandial responses of glucose and insulin, respectively, and modestly lower fasting IGF-1 concentrations. Further intervention studies are needed to weigh the impact of dietary GL on risk for chronic disease.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal
Patient Centred Factors : Triggers/Glycaemic load
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Imaging
Bioactive Substances : Insulin-like growth factor-1 ; IGF-1

Methodological quality

Jadad score : 3
Allocation concealment : Yes

Metadata